
National Aeronautics and
Space Administration

Langley Research Center
Hampton, Virginia 23681-2199

NASA/CR-1999-209551
ICASE Report No. 99-36

Parallelization of a Multigrid Incompressible Viscous
Cavity Flow Solver Using OpenMP

Kevin Roe and Piyush Mehrotra
ICASE, Hampton, Virginia

Institute for Computer Applications in Science and Engineering
NASA Langley Research Center
Hampton, VA

Operated by Universities Space Research Association

September 1999

Prepared for Langley Research Center
under Contract NAS1-97046

PARALLELIZATION OF A MULTIGRID INCOMPRESSIBLE VISCOUS CAVITY FLOW

SOLVER USING OPENMP�

KEVIN ROE AND PIYUSH MEHROTRA

Abstract. We describe a multigrid scheme for solving the viscous incompressible driven cavity problem

that has been parallelized using OpenMP. The incremental parallelization allowed by OpenMP was of great

help during the parallelization process. Results show good parallel e�ciencies for reasonable problem sizes

on an SGI Origin 2000. Since OpenMP allowed us to specify the number of threads (and in turn processors)

at runtime, we were able to improve performance when solving on smaller/coarser meshes. This was ac-

complished by giving each processor a more reasonable amount of work rather than having many processors

work on very small segments of the data (and thereby adding signi�cant overhead).

Key words. parallel computing, SGI Origin 2000, OpenMP, multigrid, viscous driven cavity

Subject classi�cation. Computer Science

1. Introduction. E�ective use of parallel machines requires easily maintainable and portable program-

ming models that allow users to exploit parallelism in applications written in a standard high-level language.

MPI provides portability, however it can be more di�cult to maintain and is not a high-level programming

model. High Performance Fortran (HPF) is portable and fairly easy to maintain. OpenMP is also portable

on shared memory architectures and fairly easy to maintain, although it can only be used on shared memory

machines [1, 2, 3]. Since HPF can be used on both shared and distributed memory machines, one would

think that it would be the parallel programming model of choice. However, OpenMP has some advantages

over HPF if one is using a shared memory machine. Most notably, the OpenMP model allows users to

incrementally parallelize their code, which can be invaluable when parallelizing large codes.

Viscous
uid
ow inside a driven cavity is a popular test case for evaluating numerical techniques. We

describe the parallelization of a multigrid scheme for solving the viscous incompressible driven cavity problem

using OpenMP. Two-dimensional incompressible viscous driven cavity
ows are computed using a loosely

coupled, implicit, second-order centrally di�erenced scheme. Mesh sequencing and a three-level V-cycle

multigrid solver with a simple Jacobi integration smoother are used in this study. Although a multi-level

V-cycle would more likely appear in practice, the three-level V-cycle was used simply to test OpenMP's

performance.

In this paper we explain the viscous driven cavity problem, the governing equations and the numerical

methods used. We then discuss the strategy used to parallelize the code. Tests were conducted to determine

the performance of OpenMP when an equal number of processors are used for each grid level, and to see if

overhead could be removed by using less processors for solving on coarser grids. Finally we discuss possible

future work involving additional tests for the multigrid algorithm when more than three grid levels are

allowed, as well as possible performance comparisons between OpenMP, MPI and HPF.

2. Problem Domain. A driven cavity is de�ned as a rectangular cavity (the cases in this paper are

all done on square cavities) where a plate of in�nite length moves across the top of the cavity from left to

�This research was supported by the National Aeronautics and Space Administration under NASA Contract No. NAS1-

97046 while the authors were in residence at the Institute for Computer Applications in Science and Engineering (ICASE),

NASA Langley Research Center, Mail Stop 132C, Hampton, Virginia 23681-2199. fkproe,pmg@icase.edu.

1

right with non-dimensional speed U (Figure 2.1). The domain is discretized on a two-dimensional structured

Cartesian mesh. Although the code was written to allow for clustering of mesh points near the walls, the

tests conducted were all done on meshes with uniform cell spacing.

��������������������������������
��������������������������������
��������������������������������

��������������������������������
��������������������������������
��������������������������������

U

Circulation

Fig. 2.1. Square cavity with an in�nitely long plate moving across the top of the cavity

3. Governing Equations. The non-conservative form of the governing equations for unsteady incom-

pressible laminar viscous
ow is as follows

ux + vy = 0;(3.1)

ut + uux + vuy + Px =
1

Re

r
2u;(3.2)

vt + uvx + vvy + Px =
1

Re

r
2v;(3.3)

where Re is the Reynolds number.

An alternative method to solving the governing equations can avoid the explicit appearance of pressure

by using the vorticity and stream function as dependent variables in the two-dimensional case. The two-

dimensional vorticity transport equation is as follows

�t + u�x + v�y =
1

Re

r
2�;(3.4)

where � is the vorticity de�ned by

� = uy � vx:(3.5)

The stream function in two dimensions is de�ned by

u = y and v = � x:(3.6)

Substituting this into (3.5) produces the Poisson equation for the stream function

r
2 = �:(3.7)

The governing equations (Equations 3.1-3.7) are discretized using second-order expressions for spatial

derivatives and a �rst-order implicit expression in time. The equations can be rewritten in two simpli�ed

forms:

2

ft + ufx + vfy �
1

Re

r
2f = �g(3.8)

�r
2f = �g(3.9)

where,

f = [u; v; �; P;] ;(3.10)

g = [Px; Py; 0; gg; �] and(3.11)

�gg = (ux + vy)t + u2x + 2uyvx + v2y �
1

Re

r
2 (ux + vy) :(3.12)

We create a loosely-coupled set of equations by evaluating f implicitly at the advanced time step, while

the non-linear terms u, v, and g are lagged at the previous time step. The resulting discretization is as

follows:

f � fn

�t
+

un

2�x
(fi+1 � fi�1) +

vn

2�y
(fj+1 � fj�1)�(3.13)

1

Re

�
1

�x2
(fi+1 � 2f + fi�1)

1

�y2
(fj+1 � 2f + fj�1)

�
= �g0

and,

�
1

�x2
(fi+1 � 2f + fi�1)�

1

�y2
(fj+1 � 2f + fj�1) = �g

0(3.14)

where f represents fn+1. g0 is the discretized form of g,

g0 =

2
666666666664

Pn
i+1�P

n
i�1

2�x

Pn
j+1�P

n
j�1

2�y

0

gg0

�n

3
777777777775

(3.15)

where,

� gg0= �
(ux + vy)

�t
+
uni+1 � u

n
i�1

4�x2
+

(unj+1 � u
n
j�1)(v

n
i+1 � v

n
i�1)

2�x�y
+

(vnj+1 � v
n
j�1)

2

4�y2
�(3.16)

1

Re

�
(ux + vy)

n
i+1 � 2(ux + vy)

n + (ux + vy)
n
i�1

�x2
+

(ux + vy)
n
j+1 � 2(ux + vy)

n + (ux + vy)
m
j�1

�y2

�
:

Also note that

(ux + vy)
n+1 = 0 and(3.17)

(ux + vy)
n =

uni+1 � u
n
i�1

2�x
+
vnj+1 � v

n
j�1

2�y:
(3.18)

3

We can rearrange Equations 3.13 and 3.14 into

Ai;jfi;j +Ai+1;jfi+1;j +Ai�1;jfi�1;j +Ai;j+1fi;j+1 +Ai;j�1fi;j�1 = Bi;j :(3.19)

When we are solving for u, v, and �, the coe�cients are de�ned as:

Ai;j = 1 + 2
�t

Re�x2
+ 2

�t

Re�y2
;

Ai�1;j = �
�t

Re�x2
�

�t

2�x
;

Ai;j�1 = �
�t

Re�y2
�

�t

2�y
and

Bi;j = fn ��t g0:

When we are solving for P and , the coe�cients are de�ned as:

Ai;j =
2

�x2
+

2

�y2
;

Ai�1;j = �
1

�x2
;

Ai;j�1 = �
1

�y2
;

Bi;j = �g
0:

Now we can solve the linearized system of governing equations in the form of Af = b. A more in depth

discussion on the solution of the viscous driven cavity problem can be seen in other references [5, 6, 7].

4. Numerical Methods. The
ow solver approximately inverts a penta-diagonal linear system at

each time step in an attempt to have the dependent variables reach a steady state condition. A Symmetric

Gauss-Seidel (SGS) iteration is used to approximately invert Af = b. A V-cycle multigrid is used to more

quickly damp low frequency errors from the solution; however, the V-cycle is currently limited to three grid

levels (�ne, medium, and coarse). In addition, grid sequencing is used initially to speed the convergence of

the solution on the �nest grid. A more detailed description of the multigrid algorithm can be seen in other

references [8, 9].

5. Parallelization Strategy. Even though the multigrid code used here was initially written without

any thought of being parallelized, only a few changes to the code were required prior to its parallelization.

Initially, a Symmetric Gauss Seidel (SGS) algorithm was used to speed convergence; however, there were

complications when attempting to parallelize this algorithm; a red-black version of this algorithm was found

to be unstable [4]. Similarly, when either a regular or red-black Gauss Seidel algorithm was substituted in

place of the SGS method, the solution became unstable. Thus, a simple Jacobi algorithm was inserted to

replace the SGS algorithm for testing purposes.

Aside from this, modi�cations to the code were only in the form of parallel directives specifying the

number of processors to use in parallel sections, which loops to parallelize, and which variables should

be considered shared or private. The code was incrementally parallelized, which aided tremendously in the

conversion process for two reasons. First, we did not have to determine the data mapping for all the variables

4

in the entire code. Second, using OpenMP in contrast to MPI or HPF made it easier to e�ciently parallelize

sections of the code and determine bottlenecks.

The next test involved using a di�erent number of processors for each grid level. Although we assign all

available processors when computing at the �nest grid level, this may not yield a su�cient amount of work

for each processor when computing at the coarse grid level. In fact, the synchronization overhead, when

using all processors at a coarser grid level, will most likely degrade overall performance. Since it is in shared

memory, we do not have to worry about the cost associated with reshaping the data if we wish to use less

threads/processors (than at the �ne grid level) in OpenMP, we can assign a di�erent number of processors

to each grid level in the multigrid algorithm to better optimize performance (Figure 5.1). This code was

written so that we can specify the number of processors to use for each grid level in an input �le. Thus the

code can be run with a di�erent number of processors per grid level without recompilation.

Fine Mesh

Medium Mesh

Coarse Mesh

Assign 8 processors to fine mesh

May still be appropriate to assign 8 processors to medium mesh

Assign only 4 processors to coarse mesh

Fig. 5.1. Example: Employing a di�erent number of processors for each mesh level

6. Results. The viscous driven cavity
ow solver was tested on the SGI Origin 2000 at NASA Ames

Research Center. All timings were measured using clock calls within the code rather than pro�ling in order

to remove as much overhead as possible; also, results were the average of ten runs. Timings were started

after initial I/O and stopped when the solution had converged. The code was compiled with the MIPSpro

7.30 f90 compiler using OpenMP directives.

Results show su�cient parallel e�ciencies when reasonable problem sizes were tested on the SGI Origin

2000. Table 6.1 and Figure 6.1 show that when the coarse grid size is su�ciently large (a factor of 8 smaller

than the �ne grid) we are able to achieve good parallel e�ciencies. When the �ne grid is 64x64, the medium

grid is only 32x32 and the coarse grid is only 16x16. Because there is little work to do for each processor, it

is di�cult to obtain much bene�t from using multiple processors. When the �ne grid is increased to 256x256

(the medium grid is 128x128 and the coarse grid is 64x64), there is now more work for each processor to

do even when multiple processors are used. For the 256x256 grid, two processors yield an excellent parallel

e�ciency of 0.94 and then steadily drops o� as more processors are assigned. Larger problems continue this

trend obtaining a parallel e�ciency of 0.96 for two processors in the 512x512 �ne grid case. Also, notice

that when the code was parallelized with OpenMP, it maintained good single node performance. This is an

advantage over HPF since many current HPF compilers are still having di�culty obtaining good single node

5

Table 6.1

Performance of driven cavity problem using OpenMP

Fine Grid Size

Processors Execution Time (sec) Parallel E�ciencies

64x64 128x128 256x256 512x512 64x64 128x128 256x256 512x512

seq 6.62 32.60 193.35 4963.34

1 6.81 33.10 198.82 4990.18 0.97 0.98 0.97 0.99

2 4.18 18.52 102.85 2582.37 0.79 0.88 0.94 0.96

4 3.09 11.13 56.21 1375.71 0.54 0.73 0.86 0.90

8 2.21 8.41 35.90 817.85 0.37 0.48 0.67 0.76

16 1.97 5.26 23.59 512.76 0.21 0.39 0.51 0.60

1 2 4 8 16
Processors

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

P
ar

al
le

l E
ffi

ci
en

cy

64x64
128x128
256x256
512x512

Fig. 6.1. Performance of driven cavity problem using OpenMP

performance.

Initially, we believed that the performance was lower than expected because of the Origin 2000's memory

placement policy [10, 11]. This is because the arrays were initialized serially; thus the arrays were assigned

to the processor which performed the initialization rather than being distributed among all the processors

which subsequently operated on the arrays. The array was then initialized in parallel and although this

improved performance, it was to a limited degree. If only a few iterations were run, then the impact on

performance would be signi�cant. When the code was run until convergence (on the order of 1000-10000

iterations depending on the test conditions) the impact on performance was small enough to be within the

margin of error for our timings.

OpenMP also enables the user to specify the number of threads (and, hence processors) for each multigrid

level, if desired. This allowed for an optimal number of processors to be speci�ed at each grid level. Table 6.2

and Figure 6.2 show that execution time can be reduced when tuning the number of processors for each grid

level. Although some bene�t was obtained, it was not as major an improvement as originally hoped for.

Plots of the solution to the viscous driven cavity for Re = 1000 using a 128x128 mesh can be seen

in Figure 6.3. The streamline trace shows the main circulation zone close to the center of the cavity and

two recirculation zones in the bottom corners of the cavity. The velocity vector plot also shows the main

6

Table 6.2

Performance with a di�erent number of processors set per grid level

Processors Fine Grid Size

Execution Time (sec) Parallel E�ciencies

�ne med coarse 64x64 128x128 256x256 512x512 64x64 128x128 256x256 512x512

8 8 8 2.21 8.41 35.90 817.85 0.37 0.48 0.67 0.76

8 8 4 2.01 7.90 33.87 810.10 0.41 0.52 0.71 0.76

16 16 16 1.97 5.26 23.59 512.76 0.21 0.39 0.51 0.60

16 16 8 1.52 4.71 21.43 498.96 0.27 0.43 0.56 0.62

1 2 4 8 16
Processors

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

P
ar

al
le

l E
ffi

ci
en

cy

64x64
128x128
256x256
512x512
64x64*
128x128*
256x256*
512x512*

* Using a different # of processors for the grid levels
8/16 processors on fine and medium grid level; 4/8 on coarse level

Fig. 6.2. Performance when a di�erent number of processors are speci�ed for each multigrid level

circulation zone as well as the two recirculation zones, although they are more di�cult to see because of the

di�erences in magnitude.

7. Conclusions/Future Work. The results show that OpenMP can achieve su�cient parallel per-

formance with simple multigrid codes. The code was written such that the user can specify the number of

processors for each grid level in the con�guration �le so that re-compilation is not necessary. It is conceivable

that a routine could be incorporated into the code that would determine the optimal number of threads to

use for each grid level at runtime. The next stage would be to remove the three level restriction and re-test

OpenMP's parallel performance. This would most likely show even more of a reduction in overhead when

very coarse grids are used (relative to the �ne grid). A direct comparison to MPI and HPF equivalent codes

would also be desired, however it would be di�cult to compare the use of a variable number of processors for

each grid level since there would be implementation di�culties when using MPI or HPF (speci�cally with

reshaping of the data at runtime which would be prohibitively expensive).

REFERENCES

[1] E. Ayguade, M. Gonzalez, J. Labarta, and X. Martorell, Multi-level and Dynamic Parallelism

Exploitation in OpenMP, DAC/CEPBA Technical Report, Computer Architecture Department,

Polytechnic University of Catalunya, 1998.

7

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
X

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
Y

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
X

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Y

Fig. 6.3. Streamline Trace and Velocity Vector Plot for Re = 1000 using a 128x128 Mesh

[2] OpenMP: A Proposed Industry Standard API for Shared Memory Programming. www.openmp.org, Oc-

tober 1997.

[3] OpenMP Fortran Application Program Interface. Version 1.0, www.openmp.org, October 1997.

[4] G. Golub and J. Ortega, Scienti�c Computing: An Introduction with Parallel Computing. Academic

Press, Inc., 1993, pp. 340-350, 387-388.

[5] H. Nishida and N. Satofuka, Higher-order Solutions of Square Driven Cavity Flow Using a Variable-

order Multi-grid Method, International Journal for Numerical Methods in Engineering 34, 1997, pp.

637-653.

[6] K.A. Hoffmann and S.T. Chiang, Computational Fluid Dynamics For Engineers - Volume I, Engi-

neering Education System, 1993.

[7] W.A. Wood, Multigrid Approach to Incompressible Viscous Cavity Flows, NASA TM 110262, 1996.

[8] W.L. Briggs, A Multigrid Tutorial, Society for Industrial and Applied Mathematics, 1994.

[9] P. Wesseling, Introduction to multigrid methods, ICASE Report No. 95-11, 1995.

[10] D.L. Sondak and J. Perry A Study of Memory Placement on an SGI Origin 2000, Proceedings of

the 9th SIAM Conference on Parallel Processing, 1999.

[11] Silicon Graphics, Inc. Origin 2000 and Onyx2 Performance Tuning and Optimization Guide, Doc-

ument Number: 007-3430-002, 1998.

8

